extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C22.D4) = (C2×C42)⋊C4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 4 | C4.1(C2^2.D4) | 128,559 |
C4.2(C22.D4) = C24.6(C2×C4) | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.2(C2^2.D4) | 128,561 |
C4.3(C22.D4) = (C2×Q8).211D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.3(C2^2.D4) | 128,562 |
C4.4(C22.D4) = C4≀C2⋊C4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.4(C2^2.D4) | 128,591 |
C4.5(C22.D4) = C42⋊9(C2×C4) | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.5(C2^2.D4) | 128,592 |
C4.6(C22.D4) = C2.(C4×D8) | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.6(C2^2.D4) | 128,594 |
C4.7(C22.D4) = Q8⋊(C4⋊C4) | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.7(C2^2.D4) | 128,595 |
C4.8(C22.D4) = D4⋊(C4⋊C4) | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.8(C2^2.D4) | 128,596 |
C4.9(C22.D4) = Q8⋊C4⋊C4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.9(C2^2.D4) | 128,597 |
C4.10(C22.D4) = C42.5D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.10(C2^2.D4) | 128,636 |
C4.11(C22.D4) = C42.6D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.11(C2^2.D4) | 128,637 |
C4.12(C22.D4) = C42.426D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 4 | C4.12(C2^2.D4) | 128,638 |
C4.13(C22.D4) = C4.(C4×D4) | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.13(C2^2.D4) | 128,641 |
C4.14(C22.D4) = (C2×C8)⋊4D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.14(C2^2.D4) | 128,642 |
C4.15(C22.D4) = M4(2)⋊21D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.15(C2^2.D4) | 128,646 |
C4.16(C22.D4) = M4(2).50D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.16(C2^2.D4) | 128,647 |
C4.17(C22.D4) = C24.83D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.17(C2^2.D4) | 128,765 |
C4.18(C22.D4) = C24.84D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.18(C2^2.D4) | 128,766 |
C4.19(C22.D4) = C24.85D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.19(C2^2.D4) | 128,767 |
C4.20(C22.D4) = C24.86D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.20(C2^2.D4) | 128,768 |
C4.21(C22.D4) = C42⋊11D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.21(C2^2.D4) | 128,771 |
C4.22(C22.D4) = C42⋊12D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.22(C2^2.D4) | 128,772 |
C4.23(C22.D4) = M4(2).8D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.23(C2^2.D4) | 128,780 |
C4.24(C22.D4) = M4(2).9D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.24(C2^2.D4) | 128,781 |
C4.25(C22.D4) = C22⋊C4.7D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.25(C2^2.D4) | 128,785 |
C4.26(C22.D4) = (C2×C4).24D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.26(C2^2.D4) | 128,803 |
C4.27(C22.D4) = (C2×C4).19Q16 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.27(C2^2.D4) | 128,804 |
C4.28(C22.D4) = C42⋊8C4⋊C2 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.28(C2^2.D4) | 128,805 |
C4.29(C22.D4) = (C2×Q8).109D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.29(C2^2.D4) | 128,806 |
C4.30(C22.D4) = C42.9D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.30(C2^2.D4) | 128,812 |
C4.31(C22.D4) = (C2×C8).D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.31(C2^2.D4) | 128,813 |
C4.32(C22.D4) = (C2×C8).6D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.32(C2^2.D4) | 128,814 |
C4.33(C22.D4) = (C2×C8).168D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.33(C2^2.D4) | 128,824 |
C4.34(C22.D4) = (C2×C4).27D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.34(C2^2.D4) | 128,825 |
C4.35(C22.D4) = (C2×C8).169D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.35(C2^2.D4) | 128,826 |
C4.36(C22.D4) = (C2×C8).60D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.36(C2^2.D4) | 128,827 |
C4.37(C22.D4) = (C2×C8).170D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.37(C2^2.D4) | 128,828 |
C4.38(C22.D4) = (C2×C8).171D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.38(C2^2.D4) | 128,829 |
C4.39(C22.D4) = C22.D16 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.39(C2^2.D4) | 128,964 |
C4.40(C22.D4) = C23.49D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.40(C2^2.D4) | 128,965 |
C4.41(C22.D4) = C23.19D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.41(C2^2.D4) | 128,966 |
C4.42(C22.D4) = C23.50D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.42(C2^2.D4) | 128,967 |
C4.43(C22.D4) = C23.51D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.43(C2^2.D4) | 128,968 |
C4.44(C22.D4) = C23.20D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.44(C2^2.D4) | 128,969 |
C4.45(C22.D4) = M5(2).C22 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.45(C2^2.D4) | 128,970 |
C4.46(C22.D4) = C23.10SD16 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.46(C2^2.D4) | 128,971 |
C4.47(C22.D4) = C24.254C23 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.47(C2^2.D4) | 128,1152 |
C4.48(C22.D4) = C23.321C24 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.48(C2^2.D4) | 128,1153 |
C4.49(C22.D4) = C23.323C24 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.49(C2^2.D4) | 128,1155 |
C4.50(C22.D4) = C24.308C23 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.50(C2^2.D4) | 128,1231 |
C4.51(C22.D4) = C23.400C24 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.51(C2^2.D4) | 128,1232 |
C4.52(C22.D4) = C23.402C24 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.52(C2^2.D4) | 128,1234 |
C4.53(C22.D4) = C24.579C23 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.53(C2^2.D4) | 128,1235 |
C4.54(C22.D4) = C23.404C24 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.54(C2^2.D4) | 128,1236 |
C4.55(C22.D4) = C2×C22.D8 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.55(C2^2.D4) | 128,1817 |
C4.56(C22.D4) = C2×C23.47D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.56(C2^2.D4) | 128,1818 |
C4.57(C22.D4) = C2×C23.19D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.57(C2^2.D4) | 128,1819 |
C4.58(C22.D4) = C2×C23.20D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.58(C2^2.D4) | 128,1820 |
C4.59(C22.D4) = C2×C23.46D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.59(C2^2.D4) | 128,1821 |
C4.60(C22.D4) = C2×C23.48D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.60(C2^2.D4) | 128,1822 |
C4.61(C22.D4) = (C2×D4).303D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.61(C2^2.D4) | 128,1830 |
C4.62(C22.D4) = (C2×D4).304D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.62(C2^2.D4) | 128,1831 |
C4.63(C22.D4) = (C2×SD16)⋊14C4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.63(C2^2.D4) | 128,609 |
C4.64(C22.D4) = (C2×C4)⋊9Q16 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.64(C2^2.D4) | 128,610 |
C4.65(C22.D4) = (C2×C4)⋊9D8 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.65(C2^2.D4) | 128,611 |
C4.66(C22.D4) = (C2×SD16)⋊15C4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.66(C2^2.D4) | 128,612 |
C4.67(C22.D4) = C8.C22⋊C4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.67(C2^2.D4) | 128,614 |
C4.68(C22.D4) = C8⋊C22⋊C4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.68(C2^2.D4) | 128,615 |
C4.69(C22.D4) = M4(2)⋊6D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.69(C2^2.D4) | 128,769 |
C4.70(C22.D4) = M4(2).7D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.70(C2^2.D4) | 128,770 |
C4.71(C22.D4) = C4⋊C4⋊7D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.71(C2^2.D4) | 128,773 |
C4.72(C22.D4) = C4⋊C4.94D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.72(C2^2.D4) | 128,774 |
C4.73(C22.D4) = C4⋊C4.95D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.73(C2^2.D4) | 128,775 |
C4.74(C22.D4) = M4(2).10D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.74(C2^2.D4) | 128,783 |
C4.75(C22.D4) = M4(2).11D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.75(C2^2.D4) | 128,784 |
C4.76(C22.D4) = (C2×C4)⋊3D8 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.76(C2^2.D4) | 128,786 |
C4.77(C22.D4) = (C2×C4)⋊5SD16 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.77(C2^2.D4) | 128,787 |
C4.78(C22.D4) = (C2×C4)⋊3Q16 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.78(C2^2.D4) | 128,788 |
C4.79(C22.D4) = C23.346C24 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.79(C2^2.D4) | 128,1178 |
C4.80(C22.D4) = C24.271C23 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.80(C2^2.D4) | 128,1179 |
C4.81(C22.D4) = C23.348C24 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.81(C2^2.D4) | 128,1180 |
C4.82(C22.D4) = (C2×D4).301D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.82(C2^2.D4) | 128,1828 |
C4.83(C22.D4) = (C2×D4).302D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.83(C2^2.D4) | 128,1829 |
C4.84(C22.D4) = C24.135D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.84(C2^2.D4) | 128,624 |
C4.85(C22.D4) = C23.23D8 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.85(C2^2.D4) | 128,625 |
C4.86(C22.D4) = C24.75D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.86(C2^2.D4) | 128,626 |
C4.87(C22.D4) = C24.76D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.87(C2^2.D4) | 128,627 |
C4.88(C22.D4) = M4(2)⋊20D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.88(C2^2.D4) | 128,632 |
C4.89(C22.D4) = M4(2).45D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.89(C2^2.D4) | 128,633 |
C4.90(C22.D4) = C4.10D4⋊3C4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.90(C2^2.D4) | 128,662 |
C4.91(C22.D4) = C4.D4⋊3C4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.91(C2^2.D4) | 128,663 |
C4.92(C22.D4) = C2.(C8⋊8D4) | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.92(C2^2.D4) | 128,665 |
C4.93(C22.D4) = C2.(C8⋊7D4) | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.93(C2^2.D4) | 128,666 |
C4.94(C22.D4) = C2.(C8⋊D4) | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.94(C2^2.D4) | 128,667 |
C4.95(C22.D4) = C2.(C8⋊2D4) | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.95(C2^2.D4) | 128,668 |
C4.96(C22.D4) = C23.524C24 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.96(C2^2.D4) | 128,1356 |
C4.97(C22.D4) = C23.525C24 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.97(C2^2.D4) | 128,1357 |
C4.98(C22.D4) = C24.599C23 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.98(C2^2.D4) | 128,1587 |
C4.99(C22.D4) = C24.117D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.99(C2^2.D4) | 128,1826 |
C4.100(C22.D4) = C24.118D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.100(C2^2.D4) | 128,1827 |
C4.101(C22.D4) = (C22×C4).275D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.101(C2^2.D4) | 128,553 |
C4.102(C22.D4) = (C22×C4).276D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.102(C2^2.D4) | 128,554 |
C4.103(C22.D4) = C23.36D8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.103(C2^2.D4) | 128,555 |
C4.104(C22.D4) = C24.157D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.104(C2^2.D4) | 128,556 |
C4.105(C22.D4) = C24.69D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.105(C2^2.D4) | 128,557 |
C4.106(C22.D4) = M4(2).40D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.106(C2^2.D4) | 128,590 |
C4.107(C22.D4) = (C2×D4).Q8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.107(C2^2.D4) | 128,600 |
C4.108(C22.D4) = M4(2)⋊19D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.108(C2^2.D4) | 128,616 |
C4.109(C22.D4) = (C2×C8)⋊D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.109(C2^2.D4) | 128,623 |
C4.110(C22.D4) = C23.12D8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.110(C2^2.D4) | 128,807 |
C4.111(C22.D4) = C24.88D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.111(C2^2.D4) | 128,808 |
C4.112(C22.D4) = C24.89D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.112(C2^2.D4) | 128,809 |
C4.113(C22.D4) = (C2×C8).55D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.113(C2^2.D4) | 128,810 |
C4.114(C22.D4) = (C2×C8).165D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.114(C2^2.D4) | 128,811 |
C4.115(C22.D4) = (C2×C4).26D8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 128 | | C4.115(C2^2.D4) | 128,818 |
C4.116(C22.D4) = (C2×C4).21Q16 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 128 | | C4.116(C2^2.D4) | 128,819 |
C4.117(C22.D4) = C4.(C4⋊Q8) | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 128 | | C4.117(C2^2.D4) | 128,820 |
C4.118(C22.D4) = M4(2).Q8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.118(C2^2.D4) | 128,821 |
C4.119(C22.D4) = M4(2).2Q8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.119(C2^2.D4) | 128,822 |
C4.120(C22.D4) = C24.11Q8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.120(C2^2.D4) | 128,823 |
C4.121(C22.D4) = C42.10D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.121(C2^2.D4) | 128,830 |
C4.122(C22.D4) = C42.32Q8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.122(C2^2.D4) | 128,834 |
C4.123(C22.D4) = C22⋊C4.Q8 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.123(C2^2.D4) | 128,835 |
C4.124(C22.D4) = C23.385C24 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.124(C2^2.D4) | 128,1217 |
C4.125(C22.D4) = C24.300C23 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.125(C2^2.D4) | 128,1219 |
C4.126(C22.D4) = C24.183D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.126(C2^2.D4) | 128,1824 |
C4.127(C22.D4) = C24.116D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.127(C2^2.D4) | 128,1825 |
C4.128(C22.D4) = C23.32M4(2) | central extension (φ=1) | 64 | | C4.128(C2^2.D4) | 128,549 |
C4.129(C22.D4) = C24.53(C2×C4) | central extension (φ=1) | 64 | | C4.129(C2^2.D4) | 128,550 |
C4.130(C22.D4) = C24.70D4 | central extension (φ=1) | 32 | | C4.130(C2^2.D4) | 128,558 |
C4.131(C22.D4) = C23.21M4(2) | central extension (φ=1) | 64 | | C4.131(C2^2.D4) | 128,582 |
C4.132(C22.D4) = (C2×C8).195D4 | central extension (φ=1) | 64 | | C4.132(C2^2.D4) | 128,583 |
C4.133(C22.D4) = C24.10Q8 | central extension (φ=1) | 32 | | C4.133(C2^2.D4) | 128,587 |
C4.134(C22.D4) = C23.22M4(2) | central extension (φ=1) | 64 | | C4.134(C2^2.D4) | 128,601 |
C4.135(C22.D4) = C23⋊2M4(2) | central extension (φ=1) | 64 | | C4.135(C2^2.D4) | 128,602 |
C4.136(C22.D4) = C24.72D4 | central extension (φ=1) | 32 | | C4.136(C2^2.D4) | 128,603 |
C4.137(C22.D4) = C4⋊C4⋊3C8 | central extension (φ=1) | 128 | | C4.137(C2^2.D4) | 128,648 |
C4.138(C22.D4) = (C2×C8).Q8 | central extension (φ=1) | 128 | | C4.138(C2^2.D4) | 128,649 |
C4.139(C22.D4) = M4(2).3Q8 | central extension (φ=1) | 32 | | C4.139(C2^2.D4) | 128,654 |
C4.140(C22.D4) = C22⋊C4⋊4C8 | central extension (φ=1) | 64 | | C4.140(C2^2.D4) | 128,655 |
C4.141(C22.D4) = C23.9M4(2) | central extension (φ=1) | 64 | | C4.141(C2^2.D4) | 128,656 |
C4.142(C22.D4) = M4(2).24D4 | central extension (φ=1) | 32 | | C4.142(C2^2.D4) | 128,661 |
C4.143(C22.D4) = C23.295C24 | central extension (φ=1) | 64 | | C4.143(C2^2.D4) | 128,1127 |
C4.144(C22.D4) = C24.115D4 | central extension (φ=1) | 32 | | C4.144(C2^2.D4) | 128,1823 |